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ChemPlot: A python library for chemical space visualization

Date: Sep 27, 2022 Version: 1.2.1

In the last decades, Machine Learning (ML) applications have had a great impact on molecular
and material science. However, every ML model requires a definition of its applicability domain.
We developed a python package, Chemplot, that allows users to plot the chemical space of their
datasets. Chemplot contains smart algorithms behind which uses both structural and tailored
similarity. Moreover, it is easy to use even for non-experts.
For details on the background of ChemPlot you can find here [https://chemrxiv.org/engage/chemrxiv/article-details/617180aaff3ba991f99af550] our paper.

This guide provides the user with the explanantion of ChemPlot concepts and functionality.
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Installation


Installing an official release

There two different options you can follow to install ChemPlot.


Option 1: Use conda

You can install ChemPlot using conda.
To install ChemPlot, at the command line, run:

~$ conda install -c conda-forge chemplot







Option 2: Use pip

An alternative method is to install is using pip:

~$ pip install chemplot






Note

ChemPlot requires RDKit, which cannot be installed using pip. The official RDKit documentation
contains installation instructions for multiple platforms [http://www.rdkit.org/docs/Install.html].






Verify Installation

You can verify that ChemPlot was installed on your local computer by running:

~$ pip show chemplot
Name: chemplot
...





If instead of what is shown above your output is:

WARNING: Package(s) not found: chemplot





ChemPlot was not installed correctly or your system cannot find the path to it.
If ChemPlot is installed correctly you can also test the package by running:

~$ pip install pytest
~$ python -m pytest --pyargs chemplot





These will run all the library tests against your installation. For every official
release from 1.2.0 you can use this command to verify that every function of
your local installation of ChemPlot works as expected.





            

          

      

      

    

  

    
      
          
            
  
How to use ChemPlot

ChemPlot is a cheminformatics tool whose purpose is to visualize subsets of the
chemical space in two dimensions. It uses the RDKit chemistry framework [http://www.rdkit.org], the
scikit-learn [http://scikit-learn.org/stable/index.html] API and the umap-learn [https://github.com/lmcinnes/umap] API.


Getting started

To demonstrate how to use the functions the library offers we will use a BBBP [https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/C_2039_BBBP_2.csv]
(blood-brain barrier penetration) 1 molecular dataset. This is a set of
molecules encoded as SMILES, which have been assigned a binary label according
to their permeability properties. This dataset can be loaded as a pandas <https://pandas.pydata.org/pandas-docs/stable/index.html>`_
DataFrame object.

from pandas import read_csv

data_BBBP = read_csv("BBBP.csv")





To visualize the molecules in 2D according to their similarity it is first
needed to construct a Plotter object. This is the class containing
all the functions ChemPlot uses to produce the desired visualizations. A
Plotter object can be constructed using classmethods, which differentiate
between the type of input that is feed to the object. In our example we need to
use the method from_smiles. We pass three parameters: the list of SMILES from
the BBBP dataset, their target values (the binary labels) and the target type
(in this case “C”, which stands for “Classification”).

from chemplot import Plotter

cp = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_type="C")







Plotting the results

When the Plotter object was constructed, descriptors for each SMILES were
calculated, using the library mordred [http://mordred-descriptor.github.io/documentation/v0.1.0/introduction.html],
and then selected based on the target values. We reduce the number of
dimensions for each molecule from the number of descriptors selected to only 2.
ChemPlot uses three different algorithms in order to achieve this.
In this example we will first use t-SNE 2.

cp.tsne()





The output will be a dataframe containg the reduced dimensions and the target values.








	t-SNE-1

	t-SNE-2

	target





	-41.056122

	0.355575

	1



	-35.535915

	21.648867

	1



	23.771597

	-14.438373

	1






To now visualize the chemical space of the dataset we use visualize_plot().

import matplotlib.pyplot as plt

cp.visualize_plot()





[image: ../_images/gs_tsne.png]
The second figure shows the results obtained by reducing the dimensions of features Principal Component Analysis (PCA) 3.

cp.pca()
cp.visualize_plot()





[image: ../_images/gs_pca.png]
The third figure shows the results obtained by reducing the dimensions of features by UMAP 4.

cp.umap()
cp.visualize_plot()





[image: ../_images/gs_umap.png]
In each figure the molecules are coloured by class value.
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Similarity Analysis

In this example we will use two molecular datasets: the BBBP [https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/C_2039_BBBP_2.csv] (blood-brain
barrier penetration) dataset 1, already used in the previous section, and
the BACE [https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/R_1513_BACE.csv] (β-secretase inhibitors) dataset 2. While the target values of the
molecules collected by the BBBP dataset are binary, and therefore discrete, the
target values of the molecules collected by the BACE dataset are continuous.

from chemplot import Plotter, load_data

data_BBBP = load_data("BBBP")
data_BACE = load_data("BACE")





In order to plot a subset of the chemical space over a 2D graph it is necessary to
define the metric according to which a certain molecule will be plotted on a certain
location of the graph. What ChemPlot uses when deciding which molecules
need to be plotted where is the concept of “molecular similarity”. Similar molecules will
be displayed closer together, while molecules which are less similar will be displayed further apart.

ChemPlot distinguishes between two definitions of molecular similarity: structural and tailored 3.


Structural

Structural similarity is defined as the number and dimensions of “fragments”
different molecules share. Molecular fragments are groups of atoms and bonds
which a molecule can be divided into. The higher the number and dimensions of
fragments two molecules share the more similar they are according to structural
similarity. ChemPlot uses Extended-Connectivity Fingerprints (ECFPs) 4 to
define which fragments are present in each molecule. To create a Plotter
object which visualizes the desired molecules according to structural
similarity we need to pass the keyword “structural” as the sim_type
parameter when constructing the object.

cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_type="C", sim_type="structural")
cp_BACE = Plotter.from_smiles(data_BACE["smiles"], target=data_BACE["target"], target_type="R", sim_type="structural")





cp_BBBP.tsne()
cp_BBBP.visualize_plot()





[image: ../_images/tsne_struct_bbbp.png]
cp_BACE.tsne()
cp_BACE.visualize_plot()





[image: ../_images/tsne_struct_bace.png]


Tailored

Tailored similarity is a similarity metric between molecules which takes into
account the target property for determining if two molecules are similar or
not. Indeed after a general set of descriptors is calculated for each molecule,
a subset of those is selected by optimizing for the target property. Finally
depending on the values of the subset ChemPlot can decide which
molecules are more similar than others. To create a Plotter object which
visualizes the desired molecules according to structural similarity, we need to
pass the keyword “tailored” as the sim_type parameter when constructing the
object. Since “tailored” is the default value of sim_type if a list of
target values is passed in construction, in the following example we could have
omitted the last parameter and still have got the same objects.

cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_type="C", sim_type="tailored")
cp_BACE = Plotter.from_smiles(data_BACE["smiles"], target=data_BACE["target"], target_type="R", sim_type="tailored")





cp_BBBP.tsne()
cp_BBBP.visualize_plot()





[image: ../_images/gs_tsne.png]
cp_BACE.tsne()
cp_BACE.visualize_plot()





[image: ../_images/bace_tsne.png]


References:



	1

	Martins, Ines Filipa, et al. (2012). A Bayesian approach to in silico blood-brain barrier penetration modeling. [https://pubmed.ncbi.nlm.nih.gov/22612593/] Journal of chemical information and modeling 52.6, 1686-1697



	2

	Subramanian, Govindan, et al. (2016). Computational modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches. [https://pubs.acs.org/doi/10.1021/acs.jcim.6b00290] Journal of chemical information and modeling 56.10, 1936-1949.



	3

	Basak, S.C. and Grunwald, G.D. (1995) Predicting mutagenicity of chemicals using topological and quantum chemical parameters: a similarity based study. [https://pubmed.ncbi.nlm.nih.gov/7670865/] Chemosphere 31, 2529–2546



	4

	Rogers, D., Hahn, M. (2010).** Extended-connectivity fingerprints. [https://pubs.acs.org/doi/abs/10.1021/ci100050t?casa_token=8yftVD_mu2MAAAAA:AZ7G0odektS9wBMyUoQY1s-SfJRsLWOJAAeBbx4fS7d0ed5iivX5T_CpoldVtqtziLDhvxaAiZvCUw] Journal of chemical information and modeling, 50(5), 742-754.









            

          

      

      

    

  

    
      
          
            
  
Dimensionality Reduction

ChemPlot uses different machine learning techniques to reduce the number of
dimensions, or features, of each molecule to only two in order to then create
2D graphs. These algorithms are: PCA 1, t-SNE 2 and UMAP 3.

For the following examples we will use two molecular datasets, already
mentioned in the previous section: the BBBP [https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/C_2039_BBBP_2.csv] (blood-brain barrier penetration)
dataset 4 and the BACE [https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/R_1513_BACE.csv] (β-secretase inhibitors) dataset 5.

from chemplot import Plotter, load_data

data_BBBP = load_data("BBBP")
data_BACE = load_data("BACE")
cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_type="C")
cp_BACE = Plotter.from_smiles(data_BACE["smiles"], target=data_BACE["target"], target_type="R")






PCA

ChemPlot uses PCA from the scikit-learn [http://scikit-learn.org/stable/index.html]
package to compute the two principal components of the molecular dataset. PCA
allows for time efficient results and for a visualization which gives a global
view of the data.

cp_BBBP.pca()
cp_BBBP.visualize_plot()





[image: ../_images/gs_pca.png]
cp_BACE.pca()
cp_BACE.visualize_plot()





[image: ../_images/bace_pca.png]


t-SNE

ChemPlot uses t-SNE from the scikit-learn [http://scikit-learn.org/stable/index.html]
package to reduce to only 2 the number of features of the molecular dataset.
t-SNE looks at local neighbourhoods of molecules when it is reducing their
dimensions. In this way the local structure of the dataset is better preserved,
while the global structure is mostly lost when plotting the results in a 2D
graph. However because of the locality preservation that t-SNE offers it is
possible to visualize well-defined clusters of similar molecules that exhibit
similar properties.

cp_BBBP.tsne()
cp_BBBP.visualize_plot()





[image: ../_images/gs_tsne.png]
cp_BACE.tsne()
cp_BACE.visualize_plot()





[image: ../_images/bace_tsne.png]
Two important parameters of the tsne() method are perplexity and
pca. The former is a positive integer parameter which defines the size of
the neighbourhoods the algorithm will look for when analyzing the dataset. The
higher the value of perplexity the wider the analyzed neighbourhoods. The
recommended values for perplexity range from 5 to 50. The pca parameter
is a Boolean value which indicates if the data has to be preprocessed with PCA.
Its value is taken into account when plotting according to structural
similarities when each molecule is encoded with a long number of features.
Since t-SNE is computationally expensive, preprocessing the data can save
substantial amounts of time when generating plots, at the cost of losing some
of the molecular structural information.



UMAP

ChemPlot uses UMAP from the umap-learn [https://github.com/lmcinnes/umap]
package to reduce to only 2 the number of features of the molecular dataset. As
t-SNE, UMAP looks at local neighbourhoods of molecules when it is reducing
their dimensions. While this also results in 2D clusters of locally similar
molecules, compared to t-SNE, UMAP retains more of the global structure of the
dataset. Compared to t-SNE, furthermore, UMAP is much more computationally
efficient and faster.

cp_BBBP.umap()
cp_BBBP.visualize_plot()





[image: ../_images/gs_umap.png]
cp_BACE.umap()
cp_BACE.visualize_plot()





[image: ../_images/bace_umap.png]
Two important parameters of the umap() method are n_neighbors,
min_dist and pca. The former is a positive integer parameter which constrains the
size of the local neighbourhood the algorithm will look for when analyzing the
dataset. Low values of n_neighbors will make ChemPlot visualize very local
structures. The min_dist parameter is a value which ranges from 0.0 to
0.99. It provides the minimum distance apart that points are allowed to be in
the 2D graph. The pca parameter is a Boolean value which indicates if the
data has to be preprocessed with PCA.
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Visualize the Chemical Space

ChemPlot can generate two types of plots for a given chemical space: static and
interactive.

For the following examples we will use the BBBP [https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/C_2039_BBBP_2.csv] (blood-brain barrier penetration)
dataset 1.

from chemplot import Plotter, load_data

data = load_data("BBBP")
cp = Plotter.from_smiles(data["smiles"], target=data["target"], target_type="C")






Static Plot

To generate a static plot first reduce the dimensions of the molecules used to
initialize the Plotter instance. Then you can use visualize_plot()
to generate a static visualization of the chemical space.

import matplotlib.pyplot as plt

cp.tsne()
cp.visualize_plot()





[image: ../_images/gs_tsne.png]


Interactive Plot

To generate an interactive plot first reduce the dimensions of the molecules used to
initialize the Plotter instance. Then you can use interactive_plot()
to generate an interactive visualization of the chemical space.

cp.interactive_plot(show_plot=True)
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Clustering Data

ChemPlot allows you to identify different clusters in you data by making use of
the KMeans 1 algorithm as implemented in sklearn [https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html].
To illustrate its implementation in ChemPlot we will load the LOGP dataset 2,
a dataset about Lipophilicity with continuos targets. Let’s load the sample
dataset and create a Plotter object.

from chemplot import Plotter, load_data

data = load_data("LOGP")
cp = Plotter.from_smiles(data["smiles"], target=data["target"], target_type="R")





Let’s then reduce the dimensions of the molecular descriptors.

cp.umap(random_state=500)





Now that the dimensions are reduced we can plot the image as shown in the previous
chapters. We can also, however, identify some clusters in the data by calling this function:

cp.cluster()





cluster() will identify the clusters in our reduced dataset by using KMeans. The
function takes one parameter n_clusters, identifying the number of clusters we want
to see. By default n_clusters is 5.
Once we clustered the data we can call visualize_plot(clusters=True) to see the
plot. Notice how we need to pass a parameter clusters set to True in order to
see the clusters in the resulting image.

cp.visualize_plot(clusters=True)





[image: ../_images/clusters_all.png]
We can however also select a number of clusters we want to highlight. The parameter
clusters in visualize_plot() can indeed also be a list of integers or an int
itself. An integer represents one of the clusters identified in the previous steps.
ChemPlot will either read the list or the single number passed as a parameter
and highlight those clusters as selected.

cp.visualize_plot(clusters=2)





[image: ../_images/clusters_2.png]
cp.visualize_plot(clusters=[1,2,3])





[image: ../_images/clusters_list.png]
We can also use interactive_plot() to visualize the clusters. In these case pass
clusters=True to generate a bokeh [https://bokeh.org/] plot with two tabs. The first tab will contain
the plot that would have been generated also without clustering. The second tab
will contain a plot showing the different clusters. Click on the elements of the
legend to mute a cluster’s data points.

cp.interactive_plot(clusters=True)
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Additional Features

ChemPlot offers additional features for chemical space visualization which can
improve the understanding of the underlying similarities between the investigated
molecules.

Using the Plotter object it is possible to create two different kind plots of
the chemical space, aside from the scatterplots showed in the previous sections.
These plots investigate the density distribution of the chemical space an are
hexagonal bin plot and the kernel density estimate plot.

To show the before mentioned features we will use the BBBP [https://github.com/mcsorkun/ChemPlot/blob/main/tests/test_data/C_2039_BBBP_2.csv]
(blood-brain barrier penetration) dataset 1, already mentioned in the
previous section:

from chemplot import Plotter, load_data

data_BBBP = load_data("BBBP")
cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_type="C")






Hexagonal Bin Plot

In a hexagonal bin plot points are binned into hexagons, which in turn are
coloured depending on the count of observations they cover. To create a
hexagonal bin plot we need to pass the keyword “hex” as the kind
parameter when visualizing the plot.

cp_BBBP.tsne(random_state=0)
cp_BBBP.visualize_plot(kind="hex")





[image: ../_images/tsne_hex.png]


Kernel Density Estimate Plot

In a kernel density estimate plot, the data distribution is visualized by a
continuous probability density curve which in our case is in 2 dimensions. To
create a kernel density estimate plot we need to pass the keyword “kde” as the
kind parameter when visualizing the plot.

cp_BBBP.visualize_plot(kind="kde")





[image: ../_images/tsne_kde.png]
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Sample datasets

ChemPlot provides some sample datasets that can be used to get started right away
with exploring the libraries features. These datasets can be loaded with the following
function:

from chemplot import load_data

df = load_data("BBBP")





In these case we are loading the BBBP dataset, used in the previous sections of this
manual. load_data() returns a pandas DataFrame built using the sample dataset
provided as a parameter.
Chemplot contains the following sample datasets:









	ID

	Name

	Type

	Size





	C_1478_CLINTOX_2

	Clintox (Toxicity) 1 2 3 4

	Classification

	1478



	C_1513_BACE_2

	BACE (Inhibitor) 5

	Classification

	1513



	C_2039_BBBP_2

	BBBP (Blood-brain barrier penetration) 6

	Classification

	2039



	C_41127_HIV_3

	HIV 7

	Classification

	41127



	R_642_SAMPL

	SAMPL (Hydration free energy) 8

	Regression

	642



	R_1513_BACE

	BACE (Binding affinity) 5

	Regression

	1513



	R_4200_LOGP

	LOGP (Lipophilicity) 9

	Regression

	4200



	R_1291_LOGS

	LOGS (Aqueous Solubility) 10

	Regression

	1291



	R_9982_AQSOLDB

	AQSOLDB (Aqueous Solubility) 11

	Regression

	9982






The datasets ID are constructed in the following way:

Name Formatting: type_size_name_num_of_classes.csv


	type: R->Numerical and C->Categorical


	size: Number of instances in the dataset


	name: Name of dataset


	num_of_classes: Number of classes (Categorical only)




You can retrieve the datasets by passing their ID to load_data().


Note

The first 8 datasets in the table are edited versions of the MoleculeNet repository 12.



You can print the available sample datasets to console with ChemPlot using the following
function:

from chemplot import info_data

df = info_data()
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Development environment

The development environment is an installation of ChemPlot on your local computer
which can be used for testing existing features or developing new ones in order
to contribute to the library.

Start by making sure you have conda installed [https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html].
This is needed since an important dependency of ChemPlot is RDKit [http://www.rdkit.org/docs],
which can safely be installed only with conda.

Then clone your forked GitHub repository of ChemPlot [https://github.com/mcsorkun/ChemPlot] on your local computer using
either HTTPS:

~$ git clone https://github.com/<your-username>/ChemPlot.git





Or using SSH:

~$ git clone git@github.com:<your-username>/ChemPlot.git





Then from the terminal navigate to the ChemPlot repository you just created. From
there create a new conda environment with all the dependencies needed to work with
ChemPlot. Create the environment by running:

~/<PATH-TO-CLONE>/ChemPlot$ conda env create -f requirements_conda.yml





When conda finishes creating the environment, activate it by running:

~/<PATH-TO-CLONE>/ChemPlot$ conda activate chemplot_env





You can now install ChemPlot in editable mode. Editable mode will allow your code
changes to be propagated through the library code without having to reinstall.

~/<PATH-TO-CLONE>/ChemPlot$ pip install -e .





You are now ready to develop ChemPlot!


Testing

To run the unit tests for ChemPlot use this command:

~$ python -m pytest --pyargs chemplot





On your cloned version of the ChemPlot repository you have two more tests, used
to check performance of the library on your machine and to check the figures
ChemPlot can generate. You can find these tests inside the performance_tests folder:

ChemPlot
├── ...
├── performance_tests/
│   ├── performanceTest.py
│   └── visualplotsTest.py
└── ...





You can run these tests by navigating to the performance_test library:

~/ChemPlot$ cd performance_tests
~/ChemPlot/performance_tests$ python performanceTest.py
~/ChemPlot/performance_tests$ python visualplotsTest.py





If it doesn’t work you might have to change python with python3 in the command.
performanceTest.py will generate a .csv file containing all the times taken
by ChemPlot to run all the dimensionality reduction methods on your machine. It will
use the sample datasets provided with the library. visualplotsTest.py will instead
create a multipage .pdf file containing different figures illustrating all plotting
options for ChemPlot. These method as well will use the sample datasets included in
the library.





            

          

      

      

    

  

  
    
    

    Citing ChemPlot
    

    
 
  

    
      
          
            
  
Citing ChemPlot

If you use ChemPlot for your scientific projects, we would appreciate if you would
cite the paper
Cihan Sorkun, M., Mullaj, D., Koelman, J., & Er, S. (2022). ChemPlot, a Python Library for Chemical Space Visualization. Chemistry–Methods, 2(7), e202200005] [https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202200005].

@article{2022ChemPlot,
    author = {Cihan Sorkun, Murat and Mullaj, Dajt and Koelman, J. M. Vianney A. and Er, Süleyman},
    title = {ChemPlot, a Python Library for Chemical Space Visualization},
    journal = {Chemistry–Methods},
    volume = {2},
    number = {7},
    pages = {e202200005},
    keywords = {chemical space visualization, cheminformatics, molecular similarity, Python, tailored similarity},
    doi = {https://doi.org/10.1002/cmtd.202200005},
    url = {https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cmtd.202200005},
    eprint = {https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cmtd.202200005},
    abstract = {Visualizing chemical spaces streamlines the analysis of molecular datasets by reducing the information
    to human perception level, hence it forms an integral piece of molecular engineering, including chemical library design,
    high-throughput screening, diversity analysis, and outlier detection. We present here ChemPlot, which enables users to
    visualize the chemical space of molecular datasets in both static and interactive ways. ChemPlot features structural and
    tailored similarity methods, together with three different dimensionality reduction methods: PCA, t-SNE, and UMAP.
    ChemPlot is the first visualization software that tackles the activity/property cliff problem by incorporating tailored similarity.
    With tailored similarity, the chemical space is constructed in a supervised manner considering target properties. Additionally,
    we propose a metric, the Distance Property Relationship score, to quantify the property difference of similar (i. e. close)
    molecules in the visualized chemical space. ChemPlot can be installed via Conda or PyPI (pip) and a web application is freely
    accessible at https://www.amdlab.nl/chemplot/.},
    year = {2022}
}
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API documentation

ChemPlot principal class is Plotter. It receives a list of molecules
as a parameter in order to then use different functions for plotting the data
in two dimensions. All the main functions of ChemPlot are part of the Plotter.
There are however two more functions outside of Plotter, which can be
used to access the sample datasets.


chemplot.Plotter


	
class chemplot.Plotter(encoding_list, target, target_type, sim_type, get_desc, get_fingerprints)

	A class used to plot the ECFP fingerprints of the molecules used to 
instantiate it.


	Parameters

	
	__sim_type (string) – similarity type structural or tailored


	__target_type (string) – target type R (regression) or C (classificatino)


	__target (list) – list containing the target values. Is empty if a target does not exist


	__mols (rdkit.Chem.rdchem.Mol) – list of valid molecules that can be plotted


	__df_descriptors (Dataframe) – datatframe containing the descriptors representation of each molecule


	__df_2_components (Dataframe) – dataframe containing the two-dimenstional representation of each molecule


	__plot_title (string) – title of the plot reflecting the dimensionality reduction algorithm used


	__data (list) – list of the scaled descriptors to which the dimensionality reduction algorithm is applied


	pca_fit (sklearn.decomposition.TSNE) – PCA object created when the corresponding algorithm is applied to the data


	tsne_fit (sklearn.manifold.TSNE) – t-SNE object created when the corresponding algorithm is applied to the data


	umap_fit (umap.umap_.UMAP) – UMAP object created when the corresponding algorithm is applied to the data


	df_plot_xy (Dataframe) – dataframe containing the coordinates that have been plotted









	
classmethod from_smiles(smiles_list, target=[], target_type=None, sim_type=None)

	Class method to construct a Plotter object from a list of SMILES.


	Parameters

	
	smile_list (list) – List of the SMILES representation of the molecules to plot.


	target (list) – target values


	target_type (string) – target type R (regression) or C (classificatino)


	sim_type (string) – similarity type structural or tailored






	Returns

	A Plotter object for the molecules given as input.



	Return type

	Plotter










	
classmethod from_inchi(inchi_list, target=[], target_type=None, sim_type=None)

	Class method to construct a Plotter object from a list of InChi.


	Parameters

	
	inchi_list (dict) – List of the InChi representation of the molecules to plot.


	target (dict) – target values


	target_type (string) – target type R (regression) or C (classificatino)


	sim_type (string) – similarity type structural or tailored






	Returns

	A Plotter object for the molecules given as input.



	Return type

	Plotter










	
pca(**kwargs)

	Calculates the first 2 PCA components of the molecular descriptors.


	Parameters

	kwargs (key, value mappings) – Other keyword arguments are passed down to sklearn.decomposition.PCA



	Returns

	The dataframe containing the PCA components.



	Return type

	Dataframe










	
tsne(perplexity=None, pca=False, random_state=None, **kwargs)

	Calculates the first 2 t-SNE components of the molecular descriptors.


	Parameters

	
	perplexity (int) – perplexity value for the t-SNE model


	pca (boolean) – indicates if the features must be preprocessed by PCA


	random_state (int) – random seed that can be passed as a parameter for reproducing the same results


	kwargs (key, value mappings) – Other keyword arguments are passed down to sklearn.manifold.TSNE






	Returns

	The dataframe containing the t-SNE components.



	Return type

	Dataframe










	
umap(n_neighbors=None, min_dist=None, pca=False, random_state=None, **kwargs)

	Calculates the first 2 UMAP components of the molecular descriptors.


	Parameters

	
	num_neighbors (int) – Number of neighbours used in the UMAP madel.


	min_dist (float) – Value between 0.0 and 0.99, indicates how close to each other the points can be displayed.


	random_state (int) – random seed that can be passed as a parameter for reproducing the same results


	kwargs (key, value mappings) – Other keyword arguments are passed down to umap.UMAP






	Returns

	The dataframe containing the UMAP components.



	Return type

	Dataframe










	
cluster(n_clusters=5, **kwargs)

	Computes the clusters presents in the embedded chemical space.


	Parameters

	
	n_clusters (int) – Number of clusters that will be computed


	kwargs (key, value mappings) – Other keyword arguments are passed down to sklearn.cluster.KMeans






	Returns

	The dataframe containing the 2D embedding.



	Return type

	Dataframe










	
visualize_plot(size=20, kind='scatter', remove_outliers=False, is_colored=True, colorbar=False, clusters=False, filename=None, title=None)

	Generates a plot for the given molecules embedded in two dimensions.


	Parameters

	
	size (int) – Size of the plot


	kind (string) – Type of plot


	remove_outliers (boolean) – Boolean value indicating if the outliers must be identified and removed


	is_colored (boolean) – Indicates if the points must be colored according to target


	colorbar (boolean) – Indicates if the plot legend must be represented as a colorbar. Only considered when the target_type is “R”.


	clusters (boolean or list or int) – If True the clusters are shown instead of possible targets. Pass a list or a int to only show selected clusters (indexed by int).


	filename (string) – Indicates the file where to save the plot


	title (string) – Title of the plot.






	Returns

	The matplotlib axes containing the plot.



	Return type

	Axes










	
interactive_plot(size=700, kind='scatter', remove_outliers=False, is_colored=True, clusters=False, filename=None, show_plot=False, title=None)

	Generates an interactive Bokeh plot for the given molecules embedded in two dimensions.


	Parameters

	
	size (int) – Size of the plot


	kind (string) – Type of plot


	remove_outliers (boolean) – Boolean value indicating if the outliers must be identified and removed


	is_colored (boolean) – Indicates if the points must be colored according to target


	clusters – Indicates if to add a tab with the clusters if these have been computed


	filename (string) – Indicates the file where to save the Bokeh plot


	show_plot (boolean) – Immediately display the current plot.


	title (string) – Title of the plot.






	Returns

	The bokeh figure containing the plot.



	Return type

	Figure















Utils


	
chemplot.load_data(name)

	Returns one of the sample datasets.


	Parameters

	name (string) – Name of the sample dataset



	Returns

	The Dataframe of the sample dataset



	Return type

	Dataframe










	
chemplot.info_data()

	Prints the metadata relative to the available sample datasets.
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