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Date: Sep 27, 2022 Version: 1.2.1

In the last decades, Machine Learning (ML) applications have had a great impact on molecular and material science.
However, every ML model requires a definition of its applicability domain. We developed a python package, Chemplot,
that allows users to plot the chemical space of their datasets. Chemplot contains smart algorithms behind which uses
both structural and tailored similarity. Moreover, it is easy to use even for non-experts. For details on the background
of ChemPlot you can find here our paper.

This guide provides the user with the explanantion of ChemPlot concepts and functionality.
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CHAPTER

ONE

INSTALLATION

1.1 Installing an official release

There two different options you can follow to install ChemPlot.

1.1.1 Option 1: Use conda

You can install ChemPlot using conda. To install ChemPlot, at the command line, run:

~$ conda install -c conda-forge chemplot

1.1.2 Option 2: Use pip

An alternative method is to install is using pip:

~$ pip install chemplot

Note: ChemPlot requires RDKit, which cannot be installed using pip. The official RDKit documentation contains
installation instructions for multiple platforms.

1.2 Verify Installation

You can verify that ChemPlot was installed on your local computer by running:

~$ pip show chemplot
Name: chemplot
...

If instead of what is shown above your output is:

WARNING: Package(s) not found: chemplot

ChemPlot was not installed correctly or your system cannot find the path to it. If ChemPlot is installed correctly you
can also test the package by running:

3
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~$ pip install pytest
~$ python -m pytest --pyargs chemplot

These will run all the library tests against your installation. For every official release from 1.2.0 you can use this
command to verify that every function of your local installation of ChemPlot works as expected.

4 Chapter 1. Installation



CHAPTER

TWO

HOW TO USE CHEMPLOT

ChemPlot is a cheminformatics tool whose purpose is to visualize subsets of the chemical space in two dimensions. It
uses the RDKit chemistry framework, the scikit-learn API and the umap-learn API.

2.1 Getting started

To demonstrate how to use the functions the library offers we will use a BBBP (blood-brain barrier penetration)1

molecular dataset. This is a set of molecules encoded as SMILES, which have been assigned a binary label ac-
cording to their permeability properties. This dataset can be loaded as a pandas <https://pandas.pydata.org/pandas-
docs/stable/index.html>`_ DataFrame object.

from pandas import read_csv

data_BBBP = read_csv("BBBP.csv")

To visualize the molecules in 2D according to their similarity it is first needed to construct a Plotter object. This is
the class containing all the functions ChemPlot uses to produce the desired visualizations. A Plotter object can be
constructed using classmethods, which differentiate between the type of input that is feed to the object. In our example
we need to use the method from_smiles. We pass three parameters: the list of SMILES from the BBBP dataset, their
target values (the binary labels) and the target type (in this case “C”, which stands for “Classification”).

from chemplot import Plotter

cp = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_type="C
→˓")

2.2 Plotting the results

When the Plotter object was constructed, descriptors for each SMILES were calculated, using the library mordred,
and then selected based on the target values. We reduce the number of dimensions for each molecule from the number
of descriptors selected to only 2. ChemPlot uses three different algorithms in order to achieve this. In this example we
will first use t-SNE2.

cp.tsne()

1 Martins, Ines Filipa, et al. (2012). A Bayesian approach to in silico blood-brain barrier penetration modeling. Journal of chemical information
and modeling 52.6, 1686-1697

2 van der Maaten, Laurens, Hinton, Geoffrey. (2008). Viualizingdata using t-SNE. Journal of Machine Learning Research. 9. 2579-2605.
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The output will be a dataframe containg the reduced dimensions and the target values.

t-SNE-1 t-SNE-2 target
-41.056122 0.355575 1
-35.535915 21.648867 1
23.771597 -14.438373 1

To now visualize the chemical space of the dataset we use visualize_plot().

import matplotlib.pyplot as plt

cp.visualize_plot()

The second figure shows the results obtained by reducing the dimensions of features Principal Component Analysis

6 Chapter 2. How to use ChemPlot
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(PCA)3.

cp.pca()
cp.visualize_plot()

The third figure shows the results obtained by reducing the dimensions of features by UMAP4.

cp.umap()
cp.visualize_plot()

3 Wold, S., Esbensen, K., Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems. 2(1-3). 37-52.
4 McInnes, L., Healy, J., Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXivpreprint

arXiv:1802.03426.

2.2. Plotting the results 7
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In each figure the molecules are coloured by class value.

References:
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CHAPTER

THREE

SIMILARITY ANALYSIS

In this example we will use two molecular datasets: the BBBP (blood-brain barrier penetration) dataset1, already used
in the previous section, and the BACE (-secretase inhibitors) dataset2. While the target values of the molecules collected
by the BBBP dataset are binary, and therefore discrete, the target values of the molecules collected by the BACE dataset
are continuous.

from chemplot import Plotter, load_data

data_BBBP = load_data("BBBP")
data_BACE = load_data("BACE")

In order to plot a subset of the chemical space over a 2D graph it is necessary to define the metric according to which a
certain molecule will be plotted on a certain location of the graph. What ChemPlot uses when deciding which molecules
need to be plotted where is the concept of “molecular similarity”. Similar molecules will be displayed closer together,
while molecules which are less similar will be displayed further apart.

ChemPlot distinguishes between two definitions of molecular similarity: structural and tailored3.

3.1 Structural

Structural similarity is defined as the number and dimensions of “fragments” different molecules share. Molecular
fragments are groups of atoms and bonds which a molecule can be divided into. The higher the number and dimensions
of fragments two molecules share the more similar they are according to structural similarity. ChemPlot uses Extended-
Connectivity Fingerprints (ECFPs)4 to define which fragments are present in each molecule. To create a Plotter
object which visualizes the desired molecules according to structural similarity we need to pass the keyword “structural”
as the sim_type parameter when constructing the object.

cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_
→˓type="C", sim_type="structural")
cp_BACE = Plotter.from_smiles(data_BACE["smiles"], target=data_BACE["target"], target_
→˓type="R", sim_type="structural")

cp_BBBP.tsne()
cp_BBBP.visualize_plot()

1 Martins, Ines Filipa, et al. (2012). A Bayesian approach to in silico blood-brain barrier penetration modeling. Journal of chemical information
and modeling 52.6, 1686-1697

2 Subramanian, Govindan, et al. (2016). Computational modeling of -secretase 1 (BACE-1) inhibitors using ligand based approaches. Journal
of chemical information and modeling 56.10, 1936-1949.

3 Basak, S.C. and Grunwald, G.D. (1995) Predicting mutagenicity of chemicals using topological and quantum chemical parameters: a simi-
larity based study. Chemosphere 31, 2529–2546

4 Rogers, D., Hahn, M. (2010).** Extended-connectivity fingerprints. Journal of chemical information and modeling, 50(5), 742-754.
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cp_BACE.tsne()
cp_BACE.visualize_plot()
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3.2 Tailored

Tailored similarity is a similarity metric between molecules which takes into account the target property for determining
if two molecules are similar or not. Indeed after a general set of descriptors is calculated for each molecule, a subset of
those is selected by optimizing for the target property. Finally depending on the values of the subset ChemPlot can de-
cide which molecules are more similar than others. To create a Plotter object which visualizes the desired molecules
according to structural similarity, we need to pass the keyword “tailored” as the sim_type parameter when construct-
ing the object. Since “tailored” is the default value of sim_type if a list of target values is passed in construction, in
the following example we could have omitted the last parameter and still have got the same objects.

cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_
→˓type="C", sim_type="tailored")
cp_BACE = Plotter.from_smiles(data_BACE["smiles"], target=data_BACE["target"], target_

(continues on next page)

3.2. Tailored 11
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(continued from previous page)

→˓type="R", sim_type="tailored")

cp_BBBP.tsne()
cp_BBBP.visualize_plot()

cp_BACE.tsne()
cp_BACE.visualize_plot()

12 Chapter 3. Similarity Analysis
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CHAPTER

FOUR

DIMENSIONALITY REDUCTION

ChemPlot uses different machine learning techniques to reduce the number of dimensions, or features, of each molecule
to only two in order to then create 2D graphs. These algorithms are: PCA1, t-SNE2 and UMAP3.

For the following examples we will use two molecular datasets, already mentioned in the previous section: the BBBP
(blood-brain barrier penetration) dataset4 and the BACE (-secretase inhibitors) dataset5.

from chemplot import Plotter, load_data

data_BBBP = load_data("BBBP")
data_BACE = load_data("BACE")
cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_
→˓type="C")
cp_BACE = Plotter.from_smiles(data_BACE["smiles"], target=data_BACE["target"], target_
→˓type="R")

4.1 PCA

ChemPlot uses PCA from the scikit-learn package to compute the two principal components of the molecular dataset.
PCA allows for time efficient results and for a visualization which gives a global view of the data.

cp_BBBP.pca()
cp_BBBP.visualize_plot()

1 Wold, S., Esbensen, K., Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems. 2(1-3). 37-52.
2 van der Maaten, Laurens, Hinton, Geoffrey. (2008). Viualizingdata using t-SNE. Journal of Machine Learning Research. 9. 2579-2605.
3 McInnes, L., Healy, J., Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXivpreprint

arXiv:1802.03426.
4 Martins, Ines Filipa, et al. (2012). A Bayesian approach to in silico blood-brain barrier penetration modeling. Journal of chemical information

and modeling 52.6, 1686-1697
5 Subramanian, Govindan, et al. (2016). Computational modeling of -secretase 1 (BACE-1) inhibitors using ligand based approaches. Journal

of chemical information and modeling 56.10, 1936-1949.
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cp_BACE.pca()
cp_BACE.visualize_plot()
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4.2 t-SNE

ChemPlot uses t-SNE from the scikit-learn package to reduce to only 2 the number of features of the molecular dataset.
t-SNE looks at local neighbourhoods of molecules when it is reducing their dimensions. In this way the local structure
of the dataset is better preserved, while the global structure is mostly lost when plotting the results in a 2D graph.
However because of the locality preservation that t-SNE offers it is possible to visualize well-defined clusters of similar
molecules that exhibit similar properties.

cp_BBBP.tsne()
cp_BBBP.visualize_plot()

4.2. t-SNE 17
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cp_BACE.tsne()
cp_BACE.visualize_plot()
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Two important parameters of the tsne() method are perplexity and pca. The former is a positive integer parameter
which defines the size of the neighbourhoods the algorithm will look for when analyzing the dataset. The higher the
value of perplexity the wider the analyzed neighbourhoods. The recommended values for perplexity range from
5 to 50. The pca parameter is a Boolean value which indicates if the data has to be preprocessed with PCA. Its value
is taken into account when plotting according to structural similarities when each molecule is encoded with a long
number of features. Since t-SNE is computationally expensive, preprocessing the data can save substantial amounts of
time when generating plots, at the cost of losing some of the molecular structural information.

4.2. t-SNE 19
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4.3 UMAP

ChemPlot uses UMAP from the umap-learn package to reduce to only 2 the number of features of the molecular dataset.
As t-SNE, UMAP looks at local neighbourhoods of molecules when it is reducing their dimensions. While this also
results in 2D clusters of locally similar molecules, compared to t-SNE, UMAP retains more of the global structure of
the dataset. Compared to t-SNE, furthermore, UMAP is much more computationally efficient and faster.

cp_BBBP.umap()
cp_BBBP.visualize_plot()

cp_BACE.umap()
cp_BACE.visualize_plot()

20 Chapter 4. Dimensionality Reduction
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Two important parameters of the umap() method are n_neighbors, min_dist and pca. The former is a positive
integer parameter which constrains the size of the local neighbourhood the algorithm will look for when analyzing the
dataset. Low values of n_neighbors will make ChemPlot visualize very local structures. The min_dist parameter
is a value which ranges from 0.0 to 0.99. It provides the minimum distance apart that points are allowed to be in the
2D graph. The pca parameter is a Boolean value which indicates if the data has to be preprocessed with PCA.

References:

4.3. UMAP 21
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CHAPTER

FIVE

VISUALIZE THE CHEMICAL SPACE

ChemPlot can generate two types of plots for a given chemical space: static and interactive.

For the following examples we will use the BBBP (blood-brain barrier penetration) dataset1.

from chemplot import Plotter, load_data

data = load_data("BBBP")
cp = Plotter.from_smiles(data["smiles"], target=data["target"], target_type="C")

5.1 Static Plot

To generate a static plot first reduce the dimensions of the molecules used to initialize the Plotter instance. Then you
can use visualize_plot() to generate a static visualization of the chemical space.

import matplotlib.pyplot as plt

cp.tsne()
cp.visualize_plot()

1 Martins, Ines Filipa, et al. (2012). A Bayesian approach to in silico blood-brain barrier penetration modeling. Journal of chemical information
and modeling 52.6, 1686-1697

23
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5.2 Interactive Plot

To generate an interactive plot first reduce the dimensions of the molecules used to initialize the Plotter instance.
Then you can use interactive_plot() to generate an interactive visualization of the chemical space.

cp.interactive_plot(show_plot=True)

The interactive plot is generated using the library bokeh. You can interact with it by using the toolbar displayed on
the top right of the visualization. You can navigate across the plot, select group of molecules, zoom in and out the
visualization and save the plot as an image. Furthermore you can hover over the molecules to see their 2D image.

References:
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CHAPTER

SIX

CLUSTERING DATA

ChemPlot allows you to identify different clusters in you data by making use of the KMeans1 algorithm as implemented
in sklearn. To illustrate its implementation in ChemPlot we will load the LOGP dataset2, a dataset about Lipophilicity
with continuos targets. Let’s load the sample dataset and create a Plotter object.

from chemplot import Plotter, load_data

data = load_data("LOGP")
cp = Plotter.from_smiles(data["smiles"], target=data["target"], target_type="R")

Let’s then reduce the dimensions of the molecular descriptors.

cp.umap(random_state=500)

Now that the dimensions are reduced we can plot the image as shown in the previous chapters. We can also, however,
identify some clusters in the data by calling this function:

cp.cluster()

cluster() will identify the clusters in our reduced dataset by using KMeans. The function takes one parameter
n_clusters, identifying the number of clusters we want to see. By default n_clusters is 5. Once we clustered
the data we can call visualize_plot(clusters=True) to see the plot. Notice how we need to pass a parameter
clusters set to True in order to see the clusters in the resulting image.

cp.visualize_plot(clusters=True)

1 Lloyd, Stuart P. (1982). Least square quantization in PCM. IEEE Transactions on Information Theory. 28 (2): 129–137.
2 Hersey, A. (2015) ChEMBL Deposited Data Set - AZ dataset

25
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We can however also select a number of clusters we want to highlight. The parameter clusters in visualize_plot()
can indeed also be a list of integers or an int itself. An integer represents one of the clusters identified in the previous
steps. ChemPlot will either read the list or the single number passed as a parameter and highlight those clusters as
selected.

cp.visualize_plot(clusters=2)

26 Chapter 6. Clustering Data
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cp.visualize_plot(clusters=[1,2,3])

27
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We can also use interactive_plot() to visualize the clusters. In these case pass clusters=True to generate a
bokeh plot with two tabs. The first tab will contain the plot that would have been generated also without clustering.
The second tab will contain a plot showing the different clusters. Click on the elements of the legend to mute a cluster’s
data points.

cp.interactive_plot(clusters=True)

References:
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CHAPTER

SEVEN

ADDITIONAL FEATURES

ChemPlot offers additional features for chemical space visualization which can improve the understanding of the un-
derlying similarities between the investigated molecules.

Using the Plotter object it is possible to create two different kind plots of the chemical space, aside from the scat-
terplots showed in the previous sections. These plots investigate the density distribution of the chemical space an are
hexagonal bin plot and the kernel density estimate plot.

To show the before mentioned features we will use the BBBP (blood-brain barrier penetration) dataset1, already men-
tioned in the previous section:

from chemplot import Plotter, load_data

data_BBBP = load_data("BBBP")
cp_BBBP = Plotter.from_smiles(data_BBBP["smiles"], target=data_BBBP["target"], target_
→˓type="C")

7.1 Hexagonal Bin Plot

In a hexagonal bin plot points are binned into hexagons, which in turn are coloured depending on the count of obser-
vations they cover. To create a hexagonal bin plot we need to pass the keyword “hex” as the kind parameter when
visualizing the plot.

cp_BBBP.tsne(random_state=0)
cp_BBBP.visualize_plot(kind="hex")

1 Martins, Ines Filipa, et al. (2012). A Bayesian approach to in silico blood-brain barrier penetration modeling. Journal of chemical information
and modeling 52.6, 1686-1697

29
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7.2 Kernel Density Estimate Plot

In a kernel density estimate plot, the data distribution is visualized by a continuous probability density curve which in
our case is in 2 dimensions. To create a kernel density estimate plot we need to pass the keyword “kde” as the kind
parameter when visualizing the plot.

cp_BBBP.visualize_plot(kind="kde")

30 Chapter 7. Additional Features
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CHAPTER

EIGHT

SAMPLE DATASETS

ChemPlot provides some sample datasets that can be used to get started right away with exploring the libraries features.
These datasets can be loaded with the following function:

from chemplot import load_data

df = load_data("BBBP")

In these case we are loading the BBBP dataset, used in the previous sections of this manual. load_data() returns
a pandas DataFrame built using the sample dataset provided as a parameter. Chemplot contains the following sample
datasets:

ID Name Type Size
C_1478_CLINTOX_2 Clintox (Toxicity)1234 Classification 1478
C_1513_BACE_2 BACE (Inhibitor)5 Classification 1513
C_2039_BBBP_2 BBBP (Blood-brain barrier penetration)6 Classification 2039
C_41127_HIV_3 HIV7 Classification 41127
R_642_SAMPL SAMPL (Hydration free energy)8 Regression 642
R_1513_BACE BACE (Binding affinity)5 Regression 1513
R_4200_LOGP LOGP (Lipophilicity)9 Regression 4200
R_1291_LOGS LOGS (Aqueous Solubility)10 Regression 1291
R_9982_AQSOLDB AQSOLDB (Aqueous Solubility)11 Regression 9982

The datasets ID are constructed in the following way:

Name Formatting: type_size_name_num_of_classes.csv
1 Gayvert, Kaitlyn M., Neel S. Madhukar, and Olivier Elemento. (2016) A data-driven approach to predicting successes and failures of

clinical trials. Cell chemical biology 23.10 1294-1301.
2 Artemov, Artem V., et al. (2016) Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes. bioRxiv

095653.
3 Novick, Paul A., et al. (2013) SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-

aided drug discovery. PloS one 8.11 e79568.
4 Aggregate Analysis of ClincalTrials.gov (AACT) Database.
5 Subramanian, Govindan, et al. (2016) Computational modeling of -secretase 1 (BACE-1) inhibitors using ligand based approaches. Journal

of chemical information and modeling 56.10 1936-1949.
6 Martins, Ines Filipa, et al. (2014) A Bayesian approach to in silico blood-brain barrier penetration modeling. Journal of chemical information
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• type: R->Numerical and C->Categorical

• size: Number of instances in the dataset

• name: Name of dataset

• num_of_classes: Number of classes (Categorical only)

You can retrieve the datasets by passing their ID to load_data().

Note: The first 8 datasets in the table are edited versions of the MoleculeNet repository12.

You can print the available sample datasets to console with ChemPlot using the following function:

from chemplot import info_data

df = info_data()

References:

12 Wu, Zhenqin, et al. (2018) MoleculeNet: a benchmark for molecular machine learning. Chemical science 9.2 513-530.
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CHAPTER

NINE

DEVELOPMENT ENVIRONMENT

The development environment is an installation of ChemPlot on your local computer which can be used for testing
existing features or developing new ones in order to contribute to the library.

Start by making sure you have conda installed. This is needed since an important dependency of ChemPlot is RDKit,
which can safely be installed only with conda.

Then clone your forked GitHub repository of ChemPlot on your local computer using either HTTPS:

~$ git clone https://github.com/<your-username>/ChemPlot.git

Or using SSH:

~$ git clone git@github.com:<your-username>/ChemPlot.git

Then from the terminal navigate to the ChemPlot repository you just created. From there create a new conda environ-
ment with all the dependencies needed to work with ChemPlot. Create the environment by running:

~/<PATH-TO-CLONE>/ChemPlot$ conda env create -f requirements_conda.yml

When conda finishes creating the environment, activate it by running:

~/<PATH-TO-CLONE>/ChemPlot$ conda activate chemplot_env

You can now install ChemPlot in editable mode. Editable mode will allow your code changes to be propagated through
the library code without having to reinstall.

~/<PATH-TO-CLONE>/ChemPlot$ pip install -e .

You are now ready to develop ChemPlot!

9.1 Testing

To run the unit tests for ChemPlot use this command:

~$ python -m pytest --pyargs chemplot

On your cloned version of the ChemPlot repository you have two more tests, used to check performance of the library
on your machine and to check the figures ChemPlot can generate. You can find these tests inside the performance_tests
folder:
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ChemPlot
...
performance_tests/

performanceTest.py
visualplotsTest.py

...

You can run these tests by navigating to the performance_test library:

~/ChemPlot$ cd performance_tests
~/ChemPlot/performance_tests$ python performanceTest.py
~/ChemPlot/performance_tests$ python visualplotsTest.py

If it doesn’t work you might have to change python with python3 in the command. performanceTest.py will
generate a .csv file containing all the times taken by ChemPlot to run all the dimensionality reduction methods on
your machine. It will use the sample datasets provided with the library. visualplotsTest.py will instead create a
multipage .pdf file containing different figures illustrating all plotting options for ChemPlot. These method as well
will use the sample datasets included in the library.
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CHAPTER

TEN

CITING CHEMPLOT

If you use ChemPlot for your scientific projects, we would appreciate if you would cite the paper Cihan Sorkun, M.,
Mullaj, D., Koelman, J., & Er, S. (2022). ChemPlot, a Python Library for Chemical Space Visualization. Chem-
istry–Methods, 2(7), e202200005].

@article{2022ChemPlot,
author = {Cihan Sorkun, Murat and Mullaj, Dajt and Koelman, J. M. Vianney A. and Er,␣

→˓Süleyman},
title = {ChemPlot, a Python Library for Chemical Space Visualization},
journal = {Chemistry–Methods},
volume = {2},
number = {7},
pages = {e202200005},
keywords = {chemical space visualization, cheminformatics, molecular similarity,␣

→˓Python, tailored similarity},
doi = {https://doi.org/10.1002/cmtd.202200005},
url = {https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cmtd.

→˓202200005},
eprint = {https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/cmtd.

→˓202200005},
abstract = {Visualizing chemical spaces streamlines the analysis of molecular␣

→˓datasets by reducing the information
to human perception level, hence it forms an integral piece of molecular engineering,

→˓ including chemical library design,
high-throughput screening, diversity analysis, and outlier detection. We present␣

→˓here ChemPlot, which enables users to
visualize the chemical space of molecular datasets in both static and interactive␣

→˓ways. ChemPlot features structural and
tailored similarity methods, together with three different dimensionality reduction␣

→˓methods: PCA, t-SNE, and UMAP.
ChemPlot is the first visualization software that tackles the activity/property␣

→˓cliff problem by incorporating tailored similarity.
With tailored similarity, the chemical space is constructed in a supervised manner␣

→˓considering target properties. Additionally,
we propose a metric, the Distance Property Relationship score, to quantify the␣

→˓property difference of similar (i.e. close)
molecules in the visualized chemical space. ChemPlot can be installed via Conda or␣

→˓PyPI (pip) and a web application is freely
accessible at https://www.amdlab.nl/chemplot/.},
year = {2022}

}
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CHAPTER

ELEVEN

API DOCUMENTATION

ChemPlot principal class is Plotter. It receives a list of molecules as a parameter in order to then use different
functions for plotting the data in two dimensions. All the main functions of ChemPlot are part of the Plotter. There
are however two more functions outside of Plotter, which can be used to access the sample datasets.

11.1 chemplot.Plotter

class chemplot.Plotter(encoding_list, target, target_type, sim_type, get_desc, get_fingerprints)
A class used to plot the ECFP fingerprints of the molecules used to instantiate it.

Parameters

• __sim_type (string) – similarity type structural or tailored

• __target_type (string) – target type R (regression) or C (classificatino)

• __target (list) – list containing the target values. Is empty if a target does not exist

• __mols (rdkit.Chem.rdchem.Mol) – list of valid molecules that can be plotted

• __df_descriptors (Dataframe) – datatframe containing the descriptors representation of
each molecule

• __df_2_components (Dataframe) – dataframe containing the two-dimenstional represen-
tation of each molecule

• __plot_title (string) – title of the plot reflecting the dimensionality reduction algorithm
used

• __data (list) – list of the scaled descriptors to which the dimensionality reduction algo-
rithm is applied

• pca_fit (sklearn.decomposition.TSNE) – PCA object created when the corresponding
algorithm is applied to the data

• tsne_fit (sklearn.manifold.TSNE) – t-SNE object created when the corresponding al-
gorithm is applied to the data

• umap_fit (umap.umap_.UMAP) – UMAP object created when the corresponding algo-
rithm is applied to the data

• df_plot_xy (Dataframe) – dataframe containing the coordinates that have been plotted

classmethod from_smiles(smiles_list, target=[], target_type=None, sim_type=None)
Class method to construct a Plotter object from a list of SMILES.

Parameters
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• smile_list (list) – List of the SMILES representation of the molecules to plot.

• target (list) – target values

• target_type (string) – target type R (regression) or C (classificatino)

• sim_type (string) – similarity type structural or tailored

Returns
A Plotter object for the molecules given as input.

Return type
Plotter

classmethod from_inchi(inchi_list, target=[], target_type=None, sim_type=None)
Class method to construct a Plotter object from a list of InChi.

Parameters

• inchi_list (dict) – List of the InChi representation of the molecules to plot.

• target (dict) – target values

• target_type (string) – target type R (regression) or C (classificatino)

• sim_type (string) – similarity type structural or tailored

Returns
A Plotter object for the molecules given as input.

Return type
Plotter

pca(**kwargs)
Calculates the first 2 PCA components of the molecular descriptors.

Parameters
kwargs (key, value mappings) – Other keyword arguments are passed down to
sklearn.decomposition.PCA

Returns
The dataframe containing the PCA components.

Return type
Dataframe

tsne(perplexity=None, pca=False, random_state=None, **kwargs)
Calculates the first 2 t-SNE components of the molecular descriptors.

Parameters

• perplexity (int) – perplexity value for the t-SNE model

• pca (boolean) – indicates if the features must be preprocessed by PCA

• random_state (int) – random seed that can be passed as a parameter for reproducing the
same results

• kwargs (key, value mappings) – Other keyword arguments are passed down to
sklearn.manifold.TSNE

Returns
The dataframe containing the t-SNE components.

Return type
Dataframe
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umap(n_neighbors=None, min_dist=None, pca=False, random_state=None, **kwargs)
Calculates the first 2 UMAP components of the molecular descriptors.

Parameters

• num_neighbors (int) – Number of neighbours used in the UMAP madel.

• min_dist (float) – Value between 0.0 and 0.99, indicates how close to each other the
points can be displayed.

• random_state (int) – random seed that can be passed as a parameter for reproducing the
same results

• kwargs (key, value mappings) – Other keyword arguments are passed down to
umap.UMAP

Returns
The dataframe containing the UMAP components.

Return type
Dataframe

cluster(n_clusters=5, **kwargs)
Computes the clusters presents in the embedded chemical space.

Parameters

• n_clusters (int) – Number of clusters that will be computed

• kwargs (key, value mappings) – Other keyword arguments are passed down to
sklearn.cluster.KMeans

Returns
The dataframe containing the 2D embedding.

Return type
Dataframe

visualize_plot(size=20, kind='scatter', remove_outliers=False, is_colored=True, colorbar=False,
clusters=False, filename=None, title=None)

Generates a plot for the given molecules embedded in two dimensions.

Parameters

• size (int) – Size of the plot

• kind (string) – Type of plot

• remove_outliers (boolean) – Boolean value indicating if the outliers must be identified
and removed

• is_colored (boolean) – Indicates if the points must be colored according to target

• colorbar (boolean) – Indicates if the plot legend must be represented as a colorbar. Only
considered when the target_type is “R”.

• clusters (boolean or list or int) – If True the clusters are shown instead of pos-
sible targets. Pass a list or a int to only show selected clusters (indexed by int).

• filename (string) – Indicates the file where to save the plot

• title (string) – Title of the plot.

Returns
The matplotlib axes containing the plot.
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Return type
Axes

interactive_plot(size=700, kind='scatter', remove_outliers=False, is_colored=True, clusters=False,
filename=None, show_plot=False, title=None)

Generates an interactive Bokeh plot for the given molecules embedded in two dimensions.

Parameters

• size (int) – Size of the plot

• kind (string) – Type of plot

• remove_outliers (boolean) – Boolean value indicating if the outliers must be identified
and removed

• is_colored (boolean) – Indicates if the points must be colored according to target

• clusters – Indicates if to add a tab with the clusters if these have been computed

• filename (string) – Indicates the file where to save the Bokeh plot

• show_plot (boolean) – Immediately display the current plot.

• title (string) – Title of the plot.

Returns
The bokeh figure containing the plot.

Return type
Figure

11.2 Utils

chemplot.load_data(name)
Returns one of the sample datasets.

Parameters
name (string) – Name of the sample dataset

Returns
The Dataframe of the sample dataset

Return type
Dataframe

chemplot.info_data()

Prints the metadata relative to the available sample datasets.
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